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Abstract

Hydraulic fracturing is the stimulation process during which fractures are created by pumping mostly water
and sand into the formations. Hydraulic fracturing is done on almost 90% of gas wells in the United States.
Selectively determining the fracturing intervals along the borehole is one of the most critical factors for
optimizing stimulation and maximizing the net present value (NPV) of the well. In this study, an empirical
model was developed to predict the formation porosity using surface drilling data and gamma ray (GR) at
the bit without needing log data.

In this study, data from three wells were used to develop an empirical model for porosity prediction
through the use of drilling data. To find the best model, a differential evolution algorithm (DE) was applied
to the space of solutions. The DE algorithm is a metaheuristic method that works by having a population of
solutions, and it iteratively try to improve the quality of answers by using a simple mathematical equation.
The developed model uses the unconfined compressive strength (UCS) obtained from an inverted rate of
penetration (ROP) model and gamma ray (GR) at the bit to estimate the formation porosity.

Data from three offset wells in Alberta, Canada were evaluated to find a porosity estimation model. The
DE algorithm was used to search the infinite space of solutions to find the best model. The models reliability
and accuracy were studied by conducting a sensitivity analysis then comparing the results to offset well
data. There is good agreement between the models estimated porosity and porosity from the well log data.
This paper presents results from individual well sections that compare the neutron porosity from logs in the
field to the calculated porosity obtained from the newly developed correlation. The results show accurate
quantitative matching as well as trends. The model presented can be applied to horizontal wells where the
porosity can be mapped in addition to the UCS value from the drilling data at no additional cost. Based on
this formation mapping log, optimum fracturing interval locations can be selected by taking the UCS and
porosity of a formation into account. The suggested approach can also be used to determine the porosity
in real-time.

The novelty of this model is in the ability to estimate porosity using typically collected drilling data
potentially in real time. By applying this model, there is no need for well services such as well logging
to find hydraulic fracturing points, which significantly reduces the cost and time associated with the well
completion operation.
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Introduction

Hydraulic fracturing is an important process in the petroleum industry, more particularly, in well stimulation.
The purpose of the hydraulic fracturing process is to increase formation permeability which in turn increases
overall production. Hydraulic fracturing was implemented for the first time in 1947, and has since been used
in thousands of wells worldwide (Charlez, Ph A, 1997). As of 2012 over one million hydraulic fracturing
jobs have been performed in the United States.

One of the most important parameters used in determining zones to hydraulically frac is porosity. There
are several common ways to determine porosity including but not limited to core analysis, well logging,
and seismic surveys. Retrieving core samples is one method to determine different formation properties
like porosity and permeability, but it can have several disadvantages. Taking core samples can be extremely
time-consuming and expensive, and because the cores are taken from selective points within a well may
not be representative of an entire formation. Core samples may also be affected by changes in pressure
and temperature and are likely to degrade throughout the process. Well logging is another method used in
determining important formation properties; while this method is more common than coring, measurements
can be adversely effected by drilling fluid and result over/underestimations. Another issue with logging is
that in highly deviated well or horizontal wells, the tools tend to lay on the low side of the wellbore and
not take accurate measurements. The seismic method for determining porosity is a complex and expensive
process. This method may also require log data analysis to determine if seismic modeling is accurate for
determining reservoir characteristics (Marion et al. 1994). Seismic analysis can also be effected by tunneling
effects (Alam et al. 1995).

Finding a way to determine formation properties that is less expensive, more accurate and can be done
in real time would be highly useful. In rock mechanic domains, empirical models have been helpful in
eliminating not only the costs of such expensive formation evaluation jobs but also the cost of conducting
laboratory tests.

In this study, two lab data sets have been used to establish correlations between unconfined compressive
strength (UCS) and porosity for sandstone and shale samples. These correlations have then been used in
conjunction with data from three wells in Western Canada to develop and verify a porosity estimation model.
This model estimates the formation porosity using drilling data and the gamma ray at the bit without the
need for well logging operations. The comparison between model estimated porosity and neutron porosity
data was also performed.

Methodology

Drilling rate of penetration (ROP) is a function of drilling operational parameters such as weight on bit
(WOB), revolutions per minute (RPM), bit geometry, drilling hydraulic and formation rock strength. The
Kerkar et al. (2014) equation incorporates the above parameters to develop an ROP model for PDC bits.
In this paper, the ROP model was used to determine unconfined rock strength (UCS). The model is shown
in Eq. 1.

K1WOB®*RPMP1COS(SR)
CCS1Dg;: TAN(BR)

ROP = [ ]th(x)b(x), (1)

By inverting the ROP equation, rock confined compressive strength (CCS) can be found. The UCS is
calculated from CCS using Eq. 2.

CCS = UCS(1 + asP,”) (2)

a, and by are rock strength lithology coefficients and P, is the difference between mud hydrostatic pressure
and formation pore pressure (Rampersad et al. 1994).
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The porosity found from well logs, the UCS calculated from an inverted ROP model, and gamma-ray
data taken from the drill bit have been used to develop a porosity estimation model. Porosity and UCS
data for a variety of sandstone and shale reservoirs have been plotted and have been used to find two
porosity correlations. These correlations, which are called sandstone and shale corrolations hereafter, give
an estimation of porosity at a given UCS for pure sandstone and shale lithologies. The plots and correlations
are shown in Figs. 1 and 2. These sandstone and shale correlations were used to filter the neutron porosity
data for three offset wells in Western Canada. The new proposed porosity model can be seen in Eq. 3.
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Figure 1—Porosity versus UCS for collected sandstone data
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Figure 2—Porosity versus UCS for collected shale data

A differential evolution (DE) algorithm has been used to find the a, b and c coefficients in Eq. 3. The DE
algorithm is a branch of evolutionary methods developed by Storn and Price (1997) and it is used to find the
optimum solution for extensive, continuous domains. The DE algorithm begins with a population of random
candidates and it recombines them to improve the fitness of each one iteratively using a simple equation.
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Each random pair vectors (X;,X,) give a differential vector (X; = X, — X;). The weighted difference vector, X,
= F x X;, is used to perturb the third random vector, X5 using Eq. 4 to achieve the noisy random vector, Xj.

Xo = X5 + X4, 4)

The "F" term is called weighting or scaling factor and it is primarily within the range of 0.5 to 2. The
weighting factor determines the amplification of differential variation among candidates. A crossover (CR)
factor regulates the amount of recombinations between candidates. The CR is applied to the noisy random
vector by taking the target vector into account to achieve the trial vector. The fitness of the trial vector is then
compared to the target vector and it is replaced if it is a better fit. The DE algorithm repeats the mutation
(weighting factor), recombination (crossover factor) and selection steps until a predetermined criteria is
achieved. The four major steps for evolutionary methods are provided in Fig. 3. The DE algorithm, like any
other metaheuristic algorithm, doesn't guarantee that an optimal solution is ever found.

Select a target vector
(TV), X,

Compare the Trial Vector with TV
and replace if it is in the population

Select two random vectors
from population, X,, X

Calculate the Trial Vector by
doing crossover between NRV
&TV

Population of Vectors

Calculate the Weighted
Difference Vector by multiplying
F, WDV=Fx(X,-X3)

Select another random
Calculate Noisy Random vector, X,
Vector, NRV=WDV+X,

Figure 3—The Differential Evolution (DE) algorithm procedure
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Results and Discussion

The coefficients in Eq. 3 were found using a DE algorithm for two of the three well datasets in Alberta,
Canada. The porosity estimation model with ideal coefficients is provided in Eq. 5.
1.75
¢ = GRO.ZS,ucsO.4—7’ (5)
The UCS, GR, neutron porosity data and the model estimated porosity for the third well were plotted in
Figs. 4 and 5. In Fig. 4, it is seen that the model estimated porosity is in good agreement with well log data
and has a good sensitivity with the gamma ray. As the gamma ray decreases, the formation shale fraction
increases and the model yields lower porosity values. Also, by increasing the UCS, the model estimates
lower porosity values. This is also in agreement with lab data in Figs. 1 and 2. The bar plot in Fig. 4 shows
the percentage difference between the neutron prosity and model estimated porosity for each data point. In
Fig. 5, a comparison between model porosity and data porosity has been done for a different interval.
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Figure 4—A comparison between model estimated porosity and neutron porosity for third offset wells
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Figure 5—A comparison between model estimated porosity and neutron porosity for third offset wells

In Fig. 6, the UCS from the inverted ROP model and gamma ray from the bit were used to calculate the
porosity. The porosity was plotted against neutron log porosity and a comparison was then performed. It can
be seen that the estimated model porosity is in a reasonable range and the model gives a good estimation
for formation porosity.
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Figure 6—A comparison between model estimated porosity and neutron porosity for one of the offset wells
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The model estimated porosity values for all the datapoints of the third well were compared with neutron
porosity data in Fig. 7. In Fig. 8 the difference in the porosity values is shown. The average difference
between model and neutron porosity log data was —0.41 percent and it is shown by the red line in Fig. 8.
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Figure 7—A comparison between model estimated porosity and
the sandstone and shale correlations for one of the offset wells
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Figure 8—The difference in porosity between the model estimated porosity
and the neutron log porosity for each data point for the third offset well

In Fig. 9, the sensitivity of the model is shown. It can be seen that increasing the UCS estimates lower
porosity values for constant gamma-ray and is in agreement with the lab data in the Figs. 1 and 2. In addition,
the model estimation for porosity increases with decreasing gamma-ray which is in agreement with the
expectations. The formations that have lower gamma-ray reading have higher sandstone fractions.
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Figure 9—A sensitivity analysis for the model estimated porosity and the pure sandstone and shale porosities

In Fig. 10 the model shale and sandstone lines were compared with the sandstone and shale model
correlations. The model gamma-ray was fixed to 40 and 140 for sandstone and shale, respectively. It is
seen that the model shale line has a good agreement with the shale correlation, while the model sandstone
line makes a good agreement for UCS higher than 60 MPa. In addition, the neutron porosity data from the
third well has been plotted in Fig. 10. As it is shown on the plot, all the data are between model shale line
and sandstone lines, and that the shandstone and shale correlations roughly satisfy the data. This is due to

the fact that the model was developed based on the neutron porosity data, while the sandstone and shale
corrolations were found using lab data.

30
25
20

15

Porosity %

10

0 50 100 150 200 250

==d=2SS Corrolation —a—— Shale Corrolation
—=aA—— Model Estimated Sandstone Porosity —=a— Model Estimated Shale Porosity
= Neutron Porosity

Figure 10—A comparison between model estimated porosity and the sandstone and
shale correlations to the neutron porosity values taken from one of the offset wells
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Conclusions

The model estimated porosity presented in this paper has many potential advantages. Comparisons between
the model estimated porosity and neutron porosity as well as the model estimated porosity and the collected
sandstone and shale porosity correlations. Having the ability to determine formation porosity from UCS and
GR at the bit can allow for better stimulation design. Because the model porosity estimation uses GR at the
bit and UCS found from an inverted ROP model, the potential for real-time application exsists. Compared
to previous techniques for determining porosity, the model estimated porosity benefits include: no pressure
or temperature effects, reduce the cost of logging or coring, remove time taken for well testing/laboratory
testing, and that the measurements are not affected by mud invasion.

Nomencluture
ROP : Rate of Penetration
WOB : Weight on Bit
RPM : Revolution per Minute of the Bit
BR : Back Rake
SR : Side Rake
CCS : Confined Compressive Strength
UCS : Unconfined Compressive Strength
GR : Gamma Ray
SS : Sand Stone
Sh : Shale
F : Weighting factor or scaling factor
CR : Crossover factor
DE : Diffrential Evoluation
W, : Wear function
h(x) : Hydraulic efficiency function
b(x) : function for the effect of Number of Blades
a,by,c; : Emperical Cofficients
a, b, : Rock strength lithology coefficients

P. : The difference between the mud hydrostatic pressure and formation pore pressure
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