Using Horizontal Well Drilling Data To Predict Key Rock Properties For Unconventional Wells In Canada And Optimize Hydraulic Fracturing Design

September 17, 2014

Prasad Kerkar,
Production Technologist, Shell Int'l E&P Inc.

Session: Horizontal Completions from the Drillers Perspective 3rd Annual Horizontal Drilling Canada

Acknowledgments

Hareland, Geir, Harcon Inc.

Williams, Deryl, Innovate Calgary

Fonseca, Ernesto, Shell International E&P Inc.

Hackbarth, Claudia, Shell International E&P Inc.

Mondal, Somnath, Shell International E&P Inc.

Bell, Sarah, Shell Canada Ltd.

Azad, Ali, Shell Canada Ltd.

Savitski, Alexei, Shell International E&P Inc.

Wong, Sau-Wai, Shell International E&P Inc.

Dykstra, Mark W, Shell International E&P Inc.

Dudley, John W, Shell International E&P Inc.

Dixit, Tanu, Shell Canada Ltd.

Eggenkamp, Irma, , Shell Canada Ltd.

Parker, Jerre L, Shell Global Solutions US Inc.

Key Message

- Routinely acquired drilling data can compute formation un/confined compressive strength and Young's modulus.
- This presentation shows motivation behind the workflow and its application to understand lateral heterogeneity in Groundbirch Montney lobes.
- Workflow performs wellbore friction analysis to estimate downhole weight-on-bit and couples it with ROP models developed for PDC/Rollercone bits.
- Young's modulus/UCS signatures can be used in correlation with fracture gradient to engineer placement of perforation clusters along the lateral in the hydraulic stimulation design.

Technology Enablers

Challenges

- Layers of rock with variable
 Estimation of rock strength
 strength and toughness
 using drilling data could
- No direct estimation of Rock Young's modulus which controls fracture growth
- Wirline logs are acquired on a few wells
- Log require rig time and significant processing
- Extrapolation from sonic logs
 across plays introduces
 uncertainty

Solution

- Estimation of rock strength using drilling data could avail UCS and YM logs on every well drilled
- Depth- and time- based drilling data is acquired on every well
- Results can be calculated in real time
- Saves waiting on postdrilling wireline logging

Business Impact

- Better well planning
- Better completion design
- Rock strength logs could be available on every well drilled from exploration to production.

SEISMIC EVALUATION

REAL TIME OPTIMIZATION

4

Methodology (1/3)

1. Sheave HL, HL-wt of hook, HL after SPP

2. Wellbore friction coefficient (µ), Calculated HL

3. Downhole Weight on Bit (DWOB)

$$SheaveHL = \frac{HL_{obs}}{n_{lines}} \cdot \frac{1 - e^{n_{lines}}}{1 - e} ...(\downarrow)$$

$$SheaveHL = \frac{HL_{obs}}{n_{lines}} \cdot \frac{e^{\left(1 - \frac{1}{e^{n_{lines}}}\right)}}{e - 1} ...(\uparrow)$$

e = individual sheave efficiency
n_{lines} = no. of lines between blocks
↓ = when lowering the blocks
↑ = when raising the blocks

```
F_{top} = \beta w \Delta L \left( \cos \alpha \ or \ \frac{\sin \alpha_{top} - \sin \alpha_{bottom}}{\alpha_{top} - \alpha_{bottom}} \right) - \mu \times \beta w \Delta L \left( \sin \alpha \ or \ \frac{\cos \alpha_{top} - \cos \alpha_{bottom}}{\alpha_{top} - \alpha_{bottom}} \right) 
+ \left( F_{bottom} - DWOB \ or \ \left[ F_{bottom} - DWOB \right] \times e^{-\mu |\theta|} \right) ... (no \ bending)
F_{top} = \beta w \Delta L \left( \cos \alpha \ or \ \frac{\sin \alpha_{top} - \sin \alpha_{bottom}}{\alpha_{top} - \alpha_{bottom}} \right) - \mu \times \beta w \Delta L \left( \sin \alpha \ or \ \frac{\cos \alpha_{top} - \cos \alpha_{bottom}}{\alpha_{top} - \alpha_{bottom}} \right) 
+ \left( F_{bottom} \ or \ F_{bottom} \times e^{-\mu |\theta|} \right) ... (bending)
```

 $\begin{array}{lll} F_{top} & = tension \ on \ the \ top \ of \ each \\ drill \ string \ element & \Delta L & = length \ of \ each \ drill \ string \\ F_{bottom} & = tension \ on \ bottom \ of \ each \\ drill \ string & = buoyancy \ factor & \alpha & = inclination \ angle \\ \beta & = buoyancy \ factor & \mu & = wellbore \ friction \ coefficient \\ \end{array}$

Methodology (2/3)

4. Sliding correction to DWOB, Relative abrasiveness constant calculation

5. ROP Models for a PDC drill bit

6. ROP Model for a Rollercone drill bit

If RPM > 14, no correction in WOB

If RPM < 14, WOB - slide = constant
$$x \Delta p$$

where, constant =
$$\frac{\left(\frac{WOB}{\Delta p}\right)_{i-2} + \left(\frac{WOB}{\Delta p}\right)_{i-3} + \left(\frac{WOB}{\Delta p}\right)_{i-4}}{3}$$

Sp. Gravity Abrasiveness GR (API)

Sand 2.6 1 10-30

Silt 2.67-2.7 0.85 50-70

Conglomite 2.4-2.9 0.71 10-140

Dolomite 2.84-2.86 0.65 <30

Limestone 2.7 0.57 <20

Shale 2.4-2.8 0.11 80-300

Coal, bituminus 1.35 0.1 20

$$ROP = \left[\frac{K_1.WOB^{a_1}.RPM^{b_1}.\cos(SR)}{CCS^{c_1}.D_B.\tan(BR)} \right] W_f.h(x).b(x)$$

$$W_f = 1 - a_3 \left(\frac{\Delta BG}{8} \right)^{b_3} \qquad \Delta BG = Ca \sum_{i=2}^{n} WOB_i.RPM_i.CCS_i.ABR_i$$

$$h(x) = a_2 \cdot \frac{(HSI \cdot \frac{JSA}{2 \cdot D_B})^{b_2}}{ROP^{c_2}} \qquad HSI = \frac{HHP}{A_B} = \frac{[Q.P_B/1714]}{[(\pi/4)D_B^2]}$$

$$b(x) = \frac{RPM^{(1.02 - N_b \times 0.02)}}{RPM^{0.92}}$$

$$ROP = \left[K_1 \frac{80.n_t.m.RPM^{a1}}{D_B^2.\tan^2 \Psi} \left(\frac{WOB}{100.n_t.CCS}\right)^{b1}\right] W_f.h(x)$$

$$W_f = 1 - a_3 \left(\frac{\Delta BG}{8}\right)^{b3} \qquad \Delta BG = Ca \sum_{i=2}^n WOB_i.RPM_i.CCS_i.ABR_i$$

Δp = differential pressure
 RPM = surface RPM
 WOB = weight on bit
 RPM = top-drive / surface RPM
 SR = PDC cutter side rake angle
 CCS = confined compressive strength
 D_B = diameter of bit
 RPD = PDC cutter back rake angle

BR = PDC cutter back rake angle $W_f = \text{bit wear function}$ h(x) = hydraulic efficiency function $b(x) = N_b \text{ effect function}$

 N_h = number of blades ΛBG = cumulative bit wear = bit wear coefficient Ca ABR = abrasiveness constant HSI = horsepower per sq. inch JSA = junk slot area HHP = hydraulic horsepower Q = pump flow rate P_{R} = bit pressure drop = bit face area A_{R}

 n_t = avg. no. of inserts contacting rock m = no. of inserts penetrations per revolution Ψ = chip formation angle K_1 , a_1 , b_1 , c_1 , a_2 , b_2 , c_2 , a_3 , b_3 - empirical constants

Methodology (3/3)

7. CCS to UCS, and Young's modulus calculation

$$UCS = \frac{CCS}{1 + a_s . Pc^{b_s}}$$

$$Ec = CCS.a_E.(1 + Pc)b_E$$

Pc = confining pressure

UCS = unconfined compressive strengthCCS = confined compressive strength

Ec = Young's modulus

a_s,b_s,aE,bE - empirical constants from laboratory triaxial test data for development TOPS

Input Data Compilation (1/4)

1. Sheave HL, HLwt of hook, HL after SPP 2. Wellbore friction coefficient (µ), Calculated HL

3. Downhole Weight on Bit (DWOB)

Drill string data

- Depth in, Depth out
- Pipe ID, OD
- Nominal weight
- Length

Rig/mud motor data

- · Wt of hook / top drive
- No. of lines, sheave ?
- Depth-in, -out, Mud motor const.

Survey data

- MD
- Inclination
- Angle

Depth based data

- MD, ROP, WOB, RPM
- HL, Pump vol., ?P
- SPP/Pump P, MWD Gamma

Time based data

- Bit depth, Depth
- HL, WOB, RPM
- Pump vol. / Flow in
- SPP/Pump P, ROP

	Bit Operations													
MD	WOB	Current	Flow rate	SPP	P bit	% @	HHP	Hours	Footage	ROP	Hours	Footage	ROP	
(m)	Min/Max (kdaN)	RPM (rpm)	(m³/min)	(kPa)	(kPa)	Bit	(kW)	(hr)	(m)	(/			cum. (m/hr)	
240.00	3.00/13.00	()	3.0000	7,200.00	1,621.27	22.52	81.096	5.00	240.00	48.00	\ /	· /	48.00	

	Drillstring Details												
Date/Time in Date		Date/Time out		BHA no.	BHA Length (m)	Min. ID (mm)	Purpose						
1/4/2011 15:00		1/5/2011 23:3	0	1	240.000	311.00	drill surface hole						
MD (m)	SW Up (kdaN)	SW Down (kdaN)	SW Rotn (kdaN)	Drag (kdaN)	Tq On Btm (N-m)		Footage (m)						
240.00	46.00	45.00	45.00	1.00	8,134.9	4,203.0	240.00						

Drillstring Components

			Drillstrii	g Compone	nts				
Component type	# Jts	Length (m)	OD (mm)	Max OD (mm)	ID (mm)	Connection Name	Weight (kg/m)	Grade	Serial no.
Heavy Weight Drill Pipe	12	110.770	163.00		108.00		0.00	0	
Crossover	1	0.420	165.00		75.00		0.00	0	NX0028
Drill Collar	9	80.570	166.00		74.00		0.00	0	
Crossover	1	0.790	205.00		70.00		0.00	0	NXO1682
Drill Collar	2	18.620	210.00		73.00		0.00	0	Nabors
Non-Mag Drill Collar	1	9.030	201.00		85.00		0.00	0	DCNM800-1 2242
Pulser Sub	1	3.250	196.00		71.00		0.00		EMS775-182 05
MWD Tool	1	5.860	201.00		96.00		0.00		TCNM800-4 80
Crossover	1	0.600	203.00		83.00		0.00	0	XONM80034 277
Bent Housing	1	9.740	272.00		0.00		0.00	0	960-392
Tri-Cone Bit	1	0.350	311.00	311.00	0.00		0.00	0	11629330

Source: Daily
Drilling Report/s

Input Data Compilation (2/4)

1. Sheave HL, HLwt of hook, HL after SPP

2. Wellbore friction coefficient (µ), Calculated HL

3. Downhole Weight on Bit (DWOB)

Drill string data

- Depth in, Depth out
- Pipe ID, OD
- Nominal weight
- Length

Rig/mud motor data

- Wt of hook / top drive
- No. of lines, sheave ?
- · Depth-in, -out, Mud motor const.

Survey data

- MD
- Inclination
- Angle

Depth based data

- MD, ROP, WOB, RPM
- HL, Pump vol., ?P
- SPP/Pump P, MWD Gamma

Time based data

- Bit depth, Depth
- HL, WOB, RPM
- Pump vol. / Flow in SPP/Pump P, ROP

Well detail Information

Office Based Instrumentation **Documents** Downloads Reports

Rig detail Information

Well Name: Operator: Contractor:

Rig:

SHELL HZ SUNSET B6-16-79-18W6 SHELL CANADA UPSTREAM

NABORS CANADA

C0085

Field:

State/Province: Country: Well ID:

SUNSET

British Columbia CANADA C6059

Company Man Name: Company Man Phone:

Tool Pusher:

Tool Pusher's Number:

MARCEL ST LOUIS/ MYRON STENE 4036509066

MIKE COMBDEN/BLAIN WAYLAND

7807174653

Unique Well ID:

Location: Contract Type: License Number: 6-16-079-18 W6M

DAY WORK 26215

Spud:

Day Number: **Estimated Days Remaining:** Proposed Depth:

03-Aug-2010 21 4484

Depth:

24 Hour Depth: Days Ahead/Behind: Latest Activity: Proposed Release Date: RigWatch Version:

4490

0 ON SCHEDULE PRESSURE TEST BOP'S 24-Aug-2010 08:00:00 PM

9.6.0.C-32

RIGWATCH Reports

Date/Time: 25-Aug-2010 07:10:20 AM

Mode: N/A Status: PRESSURE TEST BOP'S

Source: Mywells.com

Import Hookload Theory

Input Data Compilation (3/4)

4. Sliding-DWOB, Relative abrasiveness calculation 5. ROP Models for a Rollercone/PDC drill bit 6. CCS to UCS and Young's modulus calculation

Drill bit data

- Bit no., Type, Dia.IADC Code
- Depth in, Depth out
- · Wear in, Wear out

• Jet1-8 diameter

- No. & Dia. of cutters
- Back & side rake angle
- Cutter thickness
- Junk slot area
- No. of blades

Laboratorytriaxial data

- Effective confining pressure
- Effective confining strength

FROM: 27 Dec 2010

TO: 23 Jan 2011

Source: Mywells.com

BIT SUMMARY

WELL NAME / JOB#: SHELL HZ MONIAS F4-1 / C6631
OPERATOR: SHELL CANADA UPSTREAM

CONTRACTOR: NABORS CANADA
PROVINCE: British Columbia
SPUD DATE: 1/4/2011

SPUD DATE: 1/4/2011 RIG NUMBER: C0085 LICENSE NO: 26822 PROJECTED DEPTH: 4081

LOCATION: 4-11-081-21 W6M FIELD: SUNSET UNIQUE ID:

BIT#	SIZE	MFGR	TYPE	IA	IADC Code SL No.		JETS	TFA	DEPTH	DEPTH	DISTANCE	HOURS	ACCUM	ROP	DSS			DUL	L CO	DE					
				1	2	3	4				IN	OUT	DRILLED		HOURS			ICS	ocs	MDC	Loc	B/S	Gage	ODC	Reason
1	200.00	SECURITY	QH04RC	4	1	7		1162933 0	14.3 /14.3 /14.3 /23.8	926.70	0.00	613.00	613.00	20.25	20.25	30.27	1	3	7	ВТ	1	1	1	WT	TD
2		SECURITY DBS	FX74R	7	1	3		1162881 7	7.1 /7.1 /10.3 /10.3 /10.3 /10.3	0.00	613.00	899.00	286.00	5.25	25.50	54.48	3	2	4	ВТ	G	X	1	СТ	DMF
3	200.00	SECURITY	FMH3753ZR	М	4	2	3	1164150 9	9.5 /9.5 /9.5 /7.9 /7.9 /7.9 /7.9	408.71	899.00	1,175.00	276.00	11.25	36.75	24.53	4	2	4	ВТ	S	X	0	WT	ВНА
4		SECURITY DBS	FMH3753ZR	М	4	2	3	1164341 9	7.9 /7.9 /7.9 /7.9 /10.3 /10.3 /10.3	446.04	1,175.00	1,863.00	688.00	41.25	78.00	16.68	7	2	3	WT	S	X	0	СТ	ВНА
5	200.00	REED	R37DH2	5	4	7		AT4915	11.9 /11.9 /11.9	530.14	1,863.00	1,991.00	128.00	28.50	106.50	4.49	8	6	8	LT	G	F	8	WT	PR
6	200.00	REED	RD33DH	5	3	7		NN2600	12.7 /12.7 /12.7	380.03	1,991.00	2,038.00	47.00	8.00	114.50	5.88	10	6	8	LT	Α	F	8	CD	PR
7	200.00	HUGHES	GX-38CDX	5	4	7		5178937	12.7 /12.7 /12.7	380.03	2,038.00	2,129.00	91.00	17.00	131.50	5.35	-11	3	4	WT	Α	Е	1	LT	BHA
8	200.00	REED	MSF513M-B 2E	5	1	3		131274	11.1 /11.1 /11.1 /11.1 /11.1 /11.1 /11.1	677.38	2,129.00	3,544.00	1,415.00	57.00	188.50	24.82	15	3	4	WT	N	X	1	ВТ	TD

Input Data Compilation (4/4)

4. Sliding-DWOB, Relative abrasiveness calculation 5. ROP Models for a Rollercone/PDC drill bit 6. CCS to UCS and Young's modulus calculation

Drill bit data

- Bit no., Type, Dia.
- IADC Code
- Depth in, Depth out
- Wear in, Wear out

- Jet1-8 diameter
- No. & Dia. of cutters
- Back & side rake angle
- Cutter thickness
- Junk slot area
- No. of blades

Laboratorytriaxial data

- Effective confining pressure
- Effective confining strength

MNTN_F	Horizontal	as	0.49	bs	0.43
MNTN_E	Horizontal	as	0.11	bs	0.7
MNTN_D	Horizontal	as	0.28	bs	0.57
MNTN_C	Horizontal	as	0.18	bs	0.6
MNTN_B	Horizontal	as	0.19	bs	0.65

Source: Laboratory Measurements

Case Study - Well A, Sunset Area: Background

- Lower Triassic Montney Formation
 E lobe, Alberta, Canada
- Montney: Dark grey siltstone with minor sandstone to dolomitic siltstone
- 131-170F; 2-4.5 wt% TOC; 3-10% porosity; 30-70% gas saturation
- Pore pressure: 14.58 kPa/m (2.11 psi/m; specific gravity: 1.49)
- Lateral section: 2600-4490 m
- Underbalanced drilling with oil and water based mud
- ReedHycalog PDC drill bit 200 mm (7 7/8 in)

Era	Period	Formation Top	MD (m)
		Paddy	766.14
		Cadotte	793.22
	sno	Harmon	835.89
	ace	Notikewin	891.9
	Sret	Falher	952.65
	ower Cretaceous	Wilrich	1171.42
	Low	Bluesky	1237.51
	_	Gething	1267.49
		Cadomin	1420.55
	sic	Nikanassin	1445.87
oic	urassic	Fernie	1616.11
Mesozoic	ηſ	Nordegg	1721.52
Me		Baldonnel	1751.1
		Pardonet	1740.35
		Charlie Lake Fm	1794.58
		Artex	2151.19
	Sic.	Halfway	2162
	Friassic	Doig	2211
	Ė	Phosphate (Upper)	2332
		Phosphate (Middle	2346.38
		Phosphate (Lower)	2377.6
		Montney	2392.19
		MNTN E Lobe	2396.32

ROP Mdel Output – Well A, Sunset Area

- UCS prediction is consistent with that estimated from sonic logs.
- Laboratory geomechanical tests on horizontal samples measured avg.
 UCS of ~117 MPa and YM of ~37 GPa.
- Davey (2012) reported UCS of 117-136 MPa) for the Montney Formation.
- Results are also consistent with laboratory measurements by Hall and Jennings (2011) and Keneti and Wong (2011).
- Similar analysis on an identical Sunset Well B yields avg. UCS of ~109 MPa and YM of ~32 GPa.

Application: Improved hydraulic fracturing design

- Sonic logs provide: Δt_{comp}, Δt_{shear} [μs/ft]

$$V_s = \sqrt{\frac{G}{\rho}} \qquad V_p = \sqrt{\frac{K+4G}{\rho}} \qquad \underbrace{v = \frac{1}{2} \cdot \frac{(V_p / V_s)^2 - 2}{(V_p / V_s)^2 - 1}}_{2}$$

$$E = 2G(1+v) = 3K(1-2v)$$
For homogeneous isotropic materials.

Sonic logs provide critical information at cost and rig time.

σ_{hmin} – minimum horizontal stress

 σ_{cl} – closure stress

v - Poisson's ratio

σ, – overburden

P_{res} – reservoir pressure

E – Young's modulus

 $\varepsilon_{\text{tectonic}}$ – strain

 α - coefficient of thermal expansion

 ΔT – temperature change

 $\Delta \sigma_{\text{width}}$ – stress due to fracture

BHFP - bottom hole flowing pressure

G - shear modulus

K – bulk modulus

Basic stress relationship:

$$\sigma_{h \min} = \sigma_{cl} = (v) (\sigma_{v} + P_{res}) + P_{res} + (E.\varepsilon_{tectonic} + \alpha.\Delta T)$$

 Assuming tectonic strain and temperature effects as negligible,

$$\sigma_{h\min} = \sigma_{cl} = \frac{v}{1-v} \cdot (\sigma_v - P_{res}) + P_{res}$$

Proppant stress:

$$\sigma_p = \sigma_{cl} + \Delta \sigma_{width} - BHFP$$

Rock Brittleness: Engineered Perforations (1/2)

- Current practice: Equally spaced lateral clusters/stages
- Challenges:
 - Uneven hydraulic fracture growth
 - Non-productive clusters
- Opportunity
 - Engineer placement of perforation clusters along the lateral
 - Use of YM trends to understand relative brittleness of the rock

Geomechanical Considerations	Important For	Determined By
How brittle is the shale?	Fluid type selection	Petrophysical model
What is the closure pressure?	Proppant type selection	Petrophysical model
What proppant size and volume?	Avoid screenouts	Petrophysical model/tribal knowledge
Where should the frac be initiated?	Avoid screenouts	Petrophysical model/tribal knowledge

Rock Brittleness: Engineered Perforations (2/2)

Fracture design based on geomechanical data¹

Lower PR ≈ More brittle rock

Higher $YM \approx More$ brittle rock

Poisson's Ratio, Young's Modulus logs for Haynesville

				Fracture Width	Proppant	Fluid	Proppant
Brittleness	Fluid System	Fracture Ge	ometry	Closure Profile	Concentration	Volume	Volume
70%	Slick Water			14	Low	High	Low
60%	Slick Water			*			
50%	Hybrid		_	11		\Box	
40%	Linear						
30%	Foam						
20%	X-Linked						
10%	X-Linked			V	High	Low	High

- 1. Rickerman, R. et al., Petrophysics key in stimulating shales, The American Oil & Gas Reporter, March 2009.
- 2. Rickeman, R. et al., , A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays are not Clones of The Barnett Shale, Presented at the SPE Annual Technical Conference & Exhibition, Denver, Colorado, USA, 21-24 September, 2008.

Optimization of fracture placement – Schlumberger Trial

	Design Summary													
Well	Completion Method Fluid		Proppant Size	Lateral Length, ft	Stages	Average Perforation Stage Clusters Length, ft per Stage		Design Proppant per Lateral, Ibm/ft	Design Pumping Rate, bbl/min					
Well A	Geometric	Slickwater	40/70	5,312	18	295	3	1,650	90					
Well B	Engineered	Slickwater	40/70	4,528	20	226	3.7	1,585	90					
Well C	Engineered	Slickwater	40/70	4,998	20	250	3.9	1,675	90					

- Because all perforations in Well B and C were located in wellbore intervals of relatively low minimum principal stress,
 - The average fracture breakdown and treatment pressures were 7% and 3% lower respectively.
 - Fractures took 16% and 22% higher proppants at same pump rate (90 bpm).
 - Initial gas flowback rates were 33% and 40% higher than rates from Well A on the same 5/8 in. choke size.

- Seneca Resources Corporation and Schlumberger
- Marcellus shale, PA and NY
- Wells A, B and C from same ₁₇ pad with 800 ft apart

Key Message

- Routinely acquired drilling data can compute formation un/confined compressive strength and Young's modulus.
- This presentation shows motivation behind the workflow and its application to understand lateral heterogeneity in Groundbirch Montney lobes.
- Workflow performs wellbore friction analysis to estimate downhole weight-on-bit and couples it with ROP models developed for PDC/Rollercone bits.
- Young's modulus/UCS signatures can be used in correlation with fracture gradient to engineer placement of perforation clusters along the lateral in the hydraulic stimulation design.

Acknowledgments

Hareland, Geir, Harcon Inc.

Williams, Deryl, Innovate Calgary

Fonseca, Ernesto, Shell International E&P Inc.

Hackbarth, Claudia, Shell International E&P Inc.

Mondal, Somnath, Shell International E&P Inc.

Bell, Sarah, Shell Canada Ltd.

Azad, Ali, Shell Canada Ltd.

Savitski, Alexei, Shell International E&P Inc.

Wong, Sau-Wai, Shell International E&P Inc.

Dykstra, Mark W, Shell International E&P Inc.

Dudley, John W, Shell International E&P Inc.

Dixit, Tanu, Shell Canada Ltd.

Eggenkamp, Irma, , Shell Canada Ltd.

Parker, Jerre L, Shell Global Solutions US Inc.